
Abstract We propose a sufficiently simple multichain
model of ordered β-sheets, composed of extended mac-
romolecules with rigid elements. The effective constants
of intra- and interchain interactions describe primary and
secondary structures of proteins, respectively. It is found
that the long-range correlation of orientations of chain
elements decreases with the separation along the same
chain or between different chains according to the same
asymptotic power law. The exponent in this law is deter-
mined by the ratio of the energy of thermal motion and
the geometric mean of the energies of intra- and inter-
chain interactions. The characteristic scale parameters
are obtained, which define the crossover of the intra- and
interchain correlation functions from the exponential law
of decrease to the power one. The power law for intra-
chain correlations leads to a non-Gaussian behavior of
the mean-square dimensions of chains. Several types of
asymptotic dependences of mean-square dimensions of a
chain in the β-sheet on the number of chain elements are
found. Peptide chains may exist in different conforma-
tions: from extended ones to random Gaussian coils.
Long-scale statistical properties of polymer systems with
interchain interactions and those for polymer chains with
excluded volume effects are compared.

Keywords β-Sheets · Intra- and interchain correlations ·
Mean-square chain dimensions · Excluded volume 
effects

Introduction

Investigation of self-assembled multichain systems com-
posed of protein-like molecules is particularly interest-
ing. They are biocompatible and biodegradable water-
based systems, potentially highly responsive to moderate
changes in the media properties (like pH, temperature,
ionic composition, etc.). [1, 2, 3] The structures of natu-
ral peptides are very diverse, being determined by regu-
lar arrangements of hydrogen bonds as well as side-chain
interactions [4].

The same peptide with the same primary structure can
form various higher-order secondary structures with labili-
ty of the protein molecules: random coils, α-helices and β-
sheets depending on solution conditions such as tempera-
ture, pH, ionic strength, and solvent composition [1, 2, 3].
In the last case strongly extended chain molecules are
“stitched” together by hydrogen or other side-chain bonds
or interactions (e.g. covalent, orientational and ionic inter-
actions) forming independent structural units [4, 5, 6]. The
rationally designed primary structure of peptides ensures
that the β-sheet is nearly perfect: all molecules are aligned
and connected in the same way; defects are extremely rare
(Fig. 1) [1, 2, 3, 4]. Outstanding examples of such sheets
are most simple fiber polypeptides with extended confor-
mations of chains [4, 5, 6, 7, 8]. Configurations of parallel
β-sheets are found in the extended forms of native pro-
teins of keratin (hair, wool, horns etc.), in polyamides (ny-
lon-6, nylon-66) and others polymers with a host of hy-
drogen interactions. Antiparallel β-sheets are formed, e.g.
in silk fibroin [4, 7, 8]. The formation of such self-assem-
bling β-sheet tapes was reported recently for several types
of de novo designed oligopeptides [2]. When placed in
their respective solvents, these oligopeptides aggregate in-
to long semi-flexible tapes well below millimole concen-
trations. This self-assembly into tapes is often accompa-
nied by LC ordering at higher concentrations for some oli-
gopeptides. Formation of higher ordered self-assembled
structures has also been observed [1, 2, 3].

The sheets are typically very long (up to several mi-
crometers length at high enough concentrations). In na-
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tive proteins, short β-sheets or barrels are widely dis-
played, and there are also extended β-sheets in silk [4, 7,
8]. Where identical short peptide molecules are involved,
these self-assembling sheets may be very long, i.e. tape-
like [1, 2, 3].

Mathematical models previously used for the study of
ordered protein structures formed by comparatively short
peptide molecules are based on the methods of confor-
mational analysis. These models include many energetic
and geometrical parameters taking into account the real
local structure of proteins and require laborious comput-
er calculations of the conformational energy [8]. These
difficulties increase significantly with the description of
the statistical and dynamical characteristics of sufficient-
ly extended structures consisting of long polypeptide
molecules.

Therefore, a modern theoretical investigation of pro-
tein structures requires not only the methods of confor-
mational analysis, but also the development of physical
models of these structures. One such well-known single-
chain model of DNA is the model of a flexible elastic
rod with bending and twist rigidity [7]. Recently the
classical isodesmic one-dimensional model for equilibri-
um polymerization was generalized in order to describe
self-assembly in peptide solutions forming β-sheet tapes
and stacks of various thickness: double tapes and fibrils
[1, 2, 3]. The broad class of discrete and continuous sta-
tistical multiparticle models with orientational interac-
tions and fixed positional order (the Ising, plane-rotator
and Heisenberg models) used early in the statistics of
ferromagnetic systems [9] was proposed for the study 
of the conformational properties of single- [10, 11] or
multichain [12, 13, 14] ordered polymer systems includ-
ing liquid-crystalline (LC) ones.

The special study of two-dimensional statistical
multichain models may be of practical interest in con-
nection with the properties of thin films, membranes and
other surface or interfacial mesophase polymeric struc-
tures. Researchers have already tried to exploit the self-
assembling properties of natural peptides by designing

new oligomeric peptide chains, which form macroscopic
membranes [2]. The orientation of dipole groups in LC
films induced by the electromagnetic field of a laser
beam has been used for recording information [15].

The behavior of low-dimensional multiparticle sys-
tems in physics has always been of special interest. Char-
acteristic types of order and singularities at phase transi-
tions in two-dimensional systems with orientational or
other interactions differ essentially from those in one- and
three-dimensional systems [9, 16, 17]. In particular, in the
isotropic plane-rotator model (Vaks–Larkin model [17])
the power law of decay of the orientational correlation
function was obtained. This decay is slower than the ex-
ponential one for one-dimensional systems with nearest-
neighbor interactions. On the other hand, a long-range or-
der may not exist in the corresponding two-dimensional
systems, in contrast to three-dimensional systems.

In the present paper we propose a sufficiently simple
two-dimensional plane-rotator model for describing
long-scale conformational properties of sufficiently long
chains in self-assembled multichain β-sheets in proteins.
This paper is organized as follows. At first a general de-
scription of the anisotropic version of the plane-rotator
model with only two energetic parameters is considered.
At low temperatures or strong intra- and interchain inter-
actions the harmonic (quadratic) approximation for the
potential energy is used. The behavior of intra- and inter-
chain orientational correlation functions and mean-
square dimensions of the chains in the β-sheet are inves-
tigated in detail. The conditions of existence of different
conformations, i.e. extended ones, Gaussian coils and
other states with intermediate types of behavior of mean-
square chain dimensions, are obtained. In conclusion,
long-scale statistical properties of two-dimensional poly-
mer systems with intra- and interchain nearest-neighbor
interactions and those for polymer chains with excluded
volume effects are compared.

General description of the model

In the present paper a two-dimensional multichain sheet
is considered as an intermediate type of macromolecular
aggregates (between isolated polymer chains and three-
dimensional multichain ensembles). Macromolecules are
essentially planar when compared to three-dimensional
multichain layers, in which parallel chains with a finite
contour length are arranged perpendicular to this plane,
e.g. in smectic LC structures [18].

We use a simplified two-dimensional multichain mod-
el of an infinitely extended sheet composed of chains
with rigid elements – plane rotators with the average
length l, simulating bonds of amino acid residues in pro-
teins. In this model the N elements, arranged along one
“zigzag” line in a selected “longitudinal” curvilinear di-
rection (l on Fig. 2), form an entire polypeptide chain.
The index n characterizes the position of an element in a
chain (n=1...N) and the index m numbers a chain itself in
the other, “transverse” curvilinear direction (t on the
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Fig. 1 The “stitching” of chain protein molecules in the β-config-
uration by hydrogen bonds. The hydrogen interactions are indicat-
ed by dotted lines



Fig. 2) of the sheet: m=1...M. This multichain model is
similar to a two-dimensional version of the “curvilinear
crystal” [4] used for describing of mesophase ordered
polymer systems with extended chains (e.g. in cellulose
films with LC ordering type etc.). However, we assume
in this model that a local mobility may occur in multi-
chain β-sheets as in LC structures, [18] i.e. we consider
the case of higher temperatures than in model structures
of the crystalline domains [8].

The energy of intra- and interchain interactions of
nearest-neighbor chain elements of plane chains is repre-
sented in the form

(1)

where θn, m is the rotation angle of the n-th element in the
m-th chain in the (l, t) plane (Fig. 2). It is difficult to re-
late θn, m to standard protein angles in the Ramachandran
method of analysis of local chain conformations [5, 6, 7,
8]. The rotation angle θn, m in this simplified model char-
acterizes average orientations of links (e.g. amino acid
residues) in the plane of the sheet.

The energetic constants in Eq. (1) describe interac-
tions of chain elements in the “longitudinal” direction, Kl
(along the chains), and “transverse” direction, Kt (be-
tween neighboring chains, Fig. 2). These constants may
have a different origin and physical meaning and differ
strongly each from one another. Let us carry out some
estimation of these constants.

For homogeneous polymer chains the intrachain ener-
getic constant Kl is the same for all elements of the
chains. The value of Kl determines the mean cosine of
angle between neighboring chain elements (bonds or
monomer units)

η0=exp(-kBT/2Kl) (2)

which is an important conformational characteristic of
the isolated semirigid chain (Kt=0) [19]. In Eq. (2) T is
the absolute temperature and kB is the Boltzmann con-
stant.

For heterogeneous macromolecules of proteins the
constant Kl and correspondingly the parameter η0 depend
on the type of interacting neighboring amino acid resi-
dues. However, in the frame of the given model we pro-
pose that the effective energetic constant Kl is the same
for all chain elements, as for homogeneous polymer
chains. The corresponding quantity η0 is connected with
the length A of the statistical Kuhn segment (or persis-
tent length) of the real heterogeneous polypeptide chain
by the well-known expression in theory of conformatio-
nal properties of homogeneous chains [19]

(3)

In Eq. (3) the dimensionless parameter s=A/l determines
the number of rigid elements in the statistical Kuhn seg-
ment. The increase of bending rigidity of the chain (i.e.
the length A of the statistical Kuhn segment) leads to the
increase of the intrachain constant Kl (see Fig. 3). The
length of a rigid element (bond or monomer unit) for
proteins, nucleic acids and organic molecules l~(1.5–5) Å
[20, 21]. For flexible long polymer chains the value
A~(10–15) Å, [21] and the value s=A/l≤10. Then, the
quantity η0≤0.7, and correspondingly the constant
Kl≤2kBT~10–20 J (at T=300 K). On the contrary, for very
stiff peptide chains A≥100 Å, [21] and the values s≥70,
η0≥0.9, and correspondingly, Kl≥20kBT~10–19 J (at the
same temperature T=300 K). In this case the ratio
kBT/2Kl <<1 in the exponent of Eq. (2), and the Eq. (3)
leads to the relation

Kl~(kB·T/4)s (4)
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Fig. 2 The two-dimensional model of the anisotropic multichain
sheet, composed of M chains with N rigid elements. The energetic
constant Kl characterizes the bending rigidity of a chain, and Kt is
the constant of interchain interactions. The angle θn, m determines
an orientation of the n-th element in the m-th chain respect to a se-
lected in the plane (l, t) direction

Fig. 3 The dimensionless persistent length a(s)=2Kl(s)/kBT (in a
number of chain elements) versus the number of elements s=A/l in
the statistical segment. The asymptotic dependence a(s) is repre-
sented by the dashed line



The energetic constants of the intrachain orientational
interaction WΘ for shorter molecules (proteins, nucleic
acids and other rod-like organic molecules) were calcu-
lated in [20]. The values WΘ~(60–140) kcal mol–1 result
in the following estimation of the energy of orientational
interaction per bond or monomer unit Kl~10–20 J, that is
a quantity of the same order as for the corresponding in-
trachain constant for long polymer chains.

The effective energetic constant Kt in Eq. (1) describes
interchain interactions caused by hydrogen and other in-
terchain bonds or side interactions in real proteins, e.g.
interactions of orientational type. Its value is also defined
by the real chemical structure of the polymer. As is
known, [4, 19] hydrogen bonds are directive. Their force
depends strongly on an orientation of bonds relative to
the backbone of a chain. These bonds usually lead to a
stretching of chains like orientational interactions or ex-
cluded volume effects. Therefore, in spite of the different
nature of hydrogen, orientational and other interactions,
we propose in this model that they may cause analogous
conformational effects and interchain ordering.

As far as the considered two-dimensional multichain
model must describe condensed polymer systems (e.g. the
β-sheet), the value of the constant Kt may not be obtained
from statistical theory developed for weakly concentrated
systems, e.g. from the known Onsager self-consistent
mean-field approach [18]. Interchain interactions for poly-
peptide chains with polar groups are defined by interac-
tions of dipoles in neighboring chains. The constant Kt of
interchain interactions in polar peptides may be estimated
from the energy of dipole–dipole interaction between two
dipole moments µ placed in neighboring chains [22]

(5)

where the quantity r characterizes a mean distance be-
tween neighboring chains, and ε0 is dielectric constant.

The dipole moment of a bond for flexible polymer
chains is µ~10 D [21]. At r~10 Å, Eq. (5) gives the value
Kt~10–20 J. On the contrary, at the same distance between
dipoles (r~10 Å) in very stiff chains, e.g. in peptides
A≥100 Å, µ~1 D [21] and the constant of interchain in-
teractions Kt ~10–21 J.

Both parallel and antiparallel β-sheets may be de-
scribed in the framework of the model. The value of the
constant Kt is related to the lattice constant in the trans-
verse direction in the β-sheet. Therefore, the difference
between describing parallel and antiparallel β-sheets in
this model manifests itself in values of the energetic con-
stant of interchain interactions (Kt). The lattice constant
in the transverse direction in the antiparallel Paul-
ing–Corey β-sheets is equal to twice the distance be-
tween polar polypeptide chains (r1~10 Å) compared with
parallel β-sheets (r2~5 Å), the corresponding constants
Kt in parallel and antiparallel β-sheets differ from one
another (r1/r2)3~8 times, in agreement with Eq. (5).

For nonpolar macromolecules, forming e.g. systems
with a LC ordering, the value of the constant of interchain

interactions Kt may be obtained from the modulus of elas-
ticity in Frank–Oseen–Zocher elasticity theory [18]. It
may be estimated roughly from the typical energy of inter-
molecular interactions in low-molecular liquid crystals
W~2 kcal mol–1, which gives the value Kt~10–20 J. This
value is adjusted with the preceding estimation of the con-
stant Kt obtained above for stiff chains with dipole groups.
Therefore, the energetic constants Kl and Kt have the same
order of magnitude for flexible polymer chains or differ
significantly for stiff ones: Kl=(10–102)Kt. In the last case
an anisotropy of intra- and interchain interactions exists,
as in β-sheets formed from peptide chains with a suffi-
ciently large bending rigidity.

The intra- and interchain orientational 
correlation functions

Many statistical properties of multichain polymer sys-
tems, e.g. mean-square dimensions of chains, the dipole
moment of the system etc., are determined by long-range
correlations between orientations of chain elements
along and between chains (intra- and interchain correla-
tions, respectively). The corresponding correlation func-
tions were defined in references [12, 13, 14] as the mean
cosine of angle between chain elements

g(p, q)≡〈cos(θn+p, m+q–θn, m)〉 (6)

The integers p and q in Eq. (6) determine the number of
elements between chain elements in the longitudinal di-
rection l, i.e. along chains, and in the transverse ones t,
i.e. between chains, respectively (Fig. 2).

The averaging in Eq. (6) with the distribution func-
tion ρ(H)~exp[–H/kBT] may be carried out in an exact
analytic form at sufficiently strong interactions or at low
temperatures. In both cases the relations Kl/kBT �1 and
Kt/kBT �1 are valid. Therefore, the quadratic (harmonic)
approximation for Eq. (1) may be used [16, 17]

(7)

Intrachain correlations

Let us consider at first the behavior of the intrachain cor-
relation function

gl(p)≡g(p, 0)=<cos(θn+p, m-θn, m)> (8)

that will be necessary later for analysis of mean-square
dimensions of the chains in the sheet. In the low-temper-
ature approximation (7) the expression for the intrachain
correlation function gl(p) is reduced to the form

(9)
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Here ε=Kt/Kl is the parameter of anisotropy of inter- and
intrachain interactions. The behavior of the intrachain
correlation function gl(p) may be described by the ex-
pression [13, 14]

(10)

where the characteristic scale parameter .
The exponent γ in Eq. (10) is equal to the ratio of the en-
ergy of thermal motion (kBT) to the geometric mean of
intra- and interchain interactions energies of chain ele-
ments (Kl and Kt, accordingly)

(11)

At sufficiently small distances between chain elements
(p<p*) the right-hand side of Eq. (10) is represented as

and may be presented in the exponential form

(12)

where the parameter a=p*/γ=2Kl/kBT defines the corre-
sponding dimensionless persistent length of chain a=A/2l
in the continuous model of a worm-like isolated chain
(Kt=0) with length A of the statistical Kuhn segment.
[19] At sufficiently large distances (p>p*) between ele-
ments along the given chain the intrachain correlation
function (10) diminishes to zero as p→∞ according to
the power law

(13)

At Kl=Kt=K Eq. (13) is reduced to the power law with
the exponent γ=kBT/2πK. This result was obtained earlier
for the isotropic plane-rotator model [17]. Therefore, for
a chain in two-dimensional polymer systems with inter-
chain interactions (Kt≠0) besides the persistent length (a)
another characteristic parameter exists

(14)

The quantity ε=Kt /Kl characterizes an anisotropy of in-
tra- and interchain interactions. The parameter p* defines
the crossover of the intrachain correlation function gl(p)
from the exponential law (12) to the power ones (13). At
p< p* intrachain interactions are still prevailing over in-
terchain ones, although the chain is included in the two-
dimensional multichain sheet. In this sense p* character-
izes a manifestation of statistical properties of the indi-
vidual chain. At p>p* intrachain correlations of chain el-
ements decrease by the slower power law (13) due to in-
terchain interactions in the multichain sheet.

Therefore, for rigid chains, e.g. for peptides, the pa-
rameter p*�1, i.e. interchain interactions are important at
larger distances than those for flexible chains. For a chain
with the given bending rigidity at sufficiently strong in-
terchain interactions such that , the
parameter p*=γa<a, i.e. interchain interactions occur

even at smaller distances than the persistent length a of
an isolated (individual) chain. In this case the bending ri-
gidity of a chain does not manifest itself even in the two-
dimensional ensemble of such chains. On the contrary, in
the limiting case Kt→0, when the parameters p*, γ→∞,
Eq. (10) transforms to the exponential law (12) that is
valid for all distances p between chain elements in the
individual chain (Kt=0). In this case only the persistent
length a determines intrachain correlations.

Interchain correlations

The interchain correlations for elements of different
chains in the multichain sheet may be described by the
function

gt(q)≡g(0, q)=〈cos(θn, m+q-θn, m)〉 (15)

which determines the mean cosine of the angle between
chain elements disposed at the distance q (in the number
of elements) in the transverse to chains direction (be-
tween chains on Fig. 2, cf. Eq. (8)). In the low-tempera-
ture approximation (7) the interchain orientational corre-
lation function gt(q) is defined by the expression

(16)

Equation (16) differs from Eq. (9) by the corresponding
parameters in the exponent. It may be obtained from
Eq. (9) by replacing Kl→Kt (see Table 1). The corre-
sponding characteristic scale parameter
defines the crossover from the power law (16) of de-
crease of the interchain correlation function to an expo-
nential one

(17)

where the quantity b=2Kt/kBT. The parameter ζ0=exp(–1/b)
in Eq. (17) has the meaning of mean cosine of the angle
between elements in neighboring free-jointed chains (q=1,
Kl=0), interacting with the same interchain constant Kt as
in the considered model (see Table 1).

Thus, the asymptotic behavior of intra- and interchain
correlation functions depends on both the parameter of
anisotropy of inter- and intrachain interactions ε=Kt/Kl
and the exponent in the power laws
(10) and (16) (see Table 1). As shown above, for stiff
chains, e.g. for peptide chains, the relation Kl�Kt is val-
id, and consequently, p*�q*. In such systems the cross-
over to the power law for long-range correlations be-
tween chain elements in the “transverse” direction (be-
tween chains) manifests itself at smaller distances than
the corresponding crossover in the “longitudinal” direc-
tion (along the chains, Fig. 2).

Since the intra- and interchain correlation functions
gl(p) and gt(q) slow down to zero as p, q→∞, it follows
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that a long-range orientational order in the considered
multichain sheet is absent as in one-dimensional sys-
tems with only short-range interactions, [16, 17] e.g. in
an individual linear chain (Kt=0). This result corre-
sponds to the general Mermin–Wagner theorem [23].
According to this theorem, the long-range order does
not exist in one- or two-dimensional systems, where the
energy of interaction of nearest-neighbor particles is in-
variant under a continuous transformation group of
symmetry, e.g. the group of rotations in the plane, as in
this model.

Thus, intra- and interchain correlations at sufficiently
large distances between chain elements in the two-
dimensional multichain sheet decrease by the power
law, i.e. slowly compared with the isolated chain. The
power law for the correlation function is a general sta-
tistical property of low-temperature behavior for most
two-dimensional systems. Other typical examples in-
clude the continuum model of a nematic LC film in the
single-constant approximation for the Frank–Oseen–
Zocher potential [18], the magnetic with an easy magne-
tization axis, the Bose liquid, the isotropic plane-rotator
model and two-dimensional Heisenberg ferromagnetic
etc. [16, 17].

Mean-square dimensions of chains in the sheet

In this model the chain is defined as a finite “zigzag” se-
quence of N elements – rotators arranged along the se-
lected “longitudinal” curvilinear direction of the infinite-
ly extended sheet (l on Fig. 2). The end-to-end vector of
the chain consisting of N rigid elements is given by the
expression

(18)

where l is the length of a rigid element. The values in
Eq. (18) are unit vectors directed along correspond-
ingchain elements. The mean-square dimensions 
of a chain are defined as follows

(19)

For sufficiently long chains, included in an infinitely ex-
tended sheet, the values in
Eq. (19) depend only on the distance p=|n–n'| between
elements along the chains. The quantities are
defined by the intrachain function gl(p) for a selected
chain (see Eq. (8), where the quantity p=|n–n'|). Accord-
ing to reference [19] Eq. (19) may be transformed to the
form

(20)

For the model considered the function gl(p) may be de-
scribed by the power law (10). The relation between the
power and Γ function

(1/p)γ=∫dx xγ-1e-px/Γ(γ) (21)

allows the expression (21) to be reduced to the specific
form

(22)

The function ρ(x) in Eq. (22) is defined by the expres-
sion

ρ(x)=e-xxγ-1/Γ(x) (23)

This function satisfies the normalization condition

(24)

Thus, the function ρ(x) has the meaning of the distri-
bution function of the quantity as a function
of the parameter x. Substituting Eqs. (10) and (21) in
Eq. (20), we get the following expression for the quan-
tity in Eq. (22)

(25)
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Table 1 The intra- and inter-
chain orientational correlation
functions

Intrachain correlation function Interchain correlation function

The low-temperature behavior

The exponent 

Characteristic scale parameter

The behavior at small distances

The parameters

The behavior at large distances (p*/p)γ;p>p* (q*/q)γ;q>q*



Equation (25) is similar to the well-known expression for
the mean-square dimensions of an isolated chain in the the-
ory of conformational properties of single chains [19]. The
quantity is analogous to the mean cosine of the angle
between neighboring chain elements. It is connected with
the corresponding quantity η0 of an isolated chain (Kt=0,
see Eq. (2)) by the relationship , where the pa-

sponds to Gaussian chains, characteristic for long flexi-
ble chains in the conformation of random coils.

The complete dependence of the mean-square dimen-
sions in Eq. (22) on the number of chain elements
N for different values of the parameter g may be ob-
tained on the basis of Eqs. (22)–(25). For sufficiently
large values of N the asymptotic expression is obtained

(26)

Therefore, in the general case the dependence of the
quantity on the number of chain elements N is non-
Gaussian. This property is a consequence of the power
law (10) for intrachain correlations. A general form of
the dependence of the characteristic exponent ν(γ), the
multiplier C(η0, γ), and the remainder RN(γ) in Eq. (26)
on the parameter γ was discussed in reference [14] The
different ranges of behavior of the mean-square dimen-
sions are shown in Table 2.

419

rameter γ is defined by Eq. (11). The function 
may be represented in the form is the
effective persistent length, and the parameter p* is deter-
mined by Eq. (14). The quantity is a monotonically
decreasing function of x and the parameter of anisotropy
ε=Kt/Kl, and as x→0 (Fig. 4).

The expression (22) may be considered as a result of
averaging the mean-square dimensions over an
infinitely large ensemble of isolated chains, character-
ized by the exponential law (12) for intrachain correla-
tions. However, the chains from this ensemble are differ-
ent by the effective persistent length and the corre-
sponding bending rigidity . This averaging is per-
formed with the distribution function ρ(x) defined by
Eq. (23).

The behavior of the function ρ(x) in Eq. (23) depends
strongly on the value of the parameter γ (Fig. 5). At suf-
ficiently low temperatures or strong intra- and interchain
interactions of chains such that the relation 0<γ�1 is
valid (see Eq. (11)), the distribution function ρ(x) be-
haves as (1/x)1–γ. In this case the function ρ(x) has a sin-
gularity at the point x=0, i.e. ρ(0)=∞ (see Eq. (23)).
Therefore, the main contribution to the value of in
Eq. (22) is determined by ρ(x) at small values x. This
range corresponds to chains with a high effective bend-
ing rigidity ( , see Fig. 4). Consequently,
at γ�1 the second and third terms in Equation (25) lead
to the dependence . In this case, according

to Eq. (22), the mean-square dimensions cor-
respond to sufficiently extended conformations ofchains,
characteristic for β-sheets. Of course, it is valid, if the
contour length of the chain is smaller than the persistent
length.

In contrast, at sufficiently high temperatures or small
intra- and interchain interactions such that γ�1, the sin-
gularity of the function ρ(x) disappears (see Eqs. (11)
and (23)), and ρ(0)=0 at the point x=0. In this case the
dependence ρ(x) already has a non-monotonic character,
and Equation (22) is determined generally by values of x
near the point xm=γ–1. The point xm corresponds to a
maximum of the function ρ(x) (e.g. at γ=1.5 the value
xm=0.5, see Fig. 5). This maximum moves to large 
values of x if the parameter γ increases, i.e. interchain 
interactions decrease or the temperature increases
(Eq. 11). At sufficiently large values x>p* such that the
corresponding effective persistent length ã(x)=p*/x<1 and

(Fig. 4), the main contribution for long chains
(N �ã(x)) is determined by the first term of Eq. (25), i.e.

. In this case, according to Eq. (22), the
mean-square dimensions . This behavior corre-

Fig. 4 The mean cosine (x) of the angle between neighboring
elements of the chain with the effective dimensionless persistent
length ā (x) versus the quantity x at different values of the parame-
ter of anisotropy ε=Kt/Kl=10 (solid line), 1 (dashed line), 0.1 (dot-
ted line)

Fig. 5 The distribution function ρ(x) versus the quantity x for dif-
ferent values of the parameter γ=0.5 (dashed line), 1 (dotted line),
1.5 (solid line)



In the low-temperature approximation (at γ�1) the
mean-square dimensions of the chain are represented in
the form

(27)

In this range the following relation between the expo-
nents ν and γ is valid (cf. Eqs. (26) and (27))

(28)

On changing the parameter γ from 0 to 1, the quantity ν
changes from 1 to 0.5. The value ν=1 corresponds to ful-
ly extended chains in the state of absolute long-range
orientational order (at T=0). The value ν=0.5 corre-
sponds to conformations with Gaussian coils.

At γ=1 there is a break in the function ν(γ) in Eq. (26)
in the thermodynamic limit as N→∞ (see Fig. 7). In this
case the quantity ✥h2

N✧ is defined by the following ex-
pression (see Table 2)

(29)

Using the method of high temperature expansion [13] for
values γ�1, we get the expression for mean-square di-
mensions

(30)

All asymptotic dependencies for the quantity in
Table 2 are valid at sufficiently large N such that N≥p*.
For small values N≤p* the corresponding expression for

is sufficiently complicated [13]. In this case the re-
lation between the exponents ν and γ may not be de-
scribed by Eq. (28). At values N≤p* we assume that the
power dependence (26) also holds; however, the expo-
nent ν is a function of the parameter γ and N. Then, 
the exponent ν may be defined from the slope of the plot

drawn on a log–log scale (Fig. 6). The de-
pendences of the exponent ν(γ) at different finite values
of N are represented in Fig. 7. 

Conclusion

Therefore, the proposed “quasi-crystalline” multichain
model of β-sheets may be applied not only to a very spe-

cial case of protein structure, namely extended conforma-
tions of chains. In the considered harmonic approxima-
tion (7) polypeptide chains may exist in different confor-
mations: from extended ones, as in β-sheets (at 0≤γ≤1), to
random Gaussian coils (at γ≥2). In the range γ<1 the
mean-square dimensions of the chain in the sheet have an
non-Gaussian behavior, i.e. (0.5<ν<1). In
this range interchain interactions are strong enough that a
power law (13) for the intrachain correlation function ex-
ists.
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Table 2 The behavior of mean-square dimensions of chains

depending on the value of the parameter 

The value of The asymptotic dependence of on N
parameter γ

γ�1
γ≥2 2a·γ·N·l2/(γ−1)+o(p*/N)
γ=2 2(p*l)2[(N/p*)−ln (N/p*)]

1<γ<2

γ=1 2(p*l)2(N/p*)[ln (N/p*)−1]
γ<1 l2N2−γ+O(N/p*)

Fig. 6 The quantity versus ln N for chains
with the given bending rigidity (a=2Kl/kBT=0.1) at different values
of the parameter γ=0 (solid line), 0.5 (dotted line), 1 (long dashed
line), 1.5 (medium dashed line), ∞ (dash–dot–dot line). The cases
γ=0 and γ=∞ correspond to systems of fully extended chains and
isolated Gaussian chains, respectively

Fig. 7 The logarithmical exponent ver-

sus the ratio γ for the chains with the given bending rigidity
(a=2Kl/kBT=1) and the number of chain elements: N=102 (dotted
line), 104 (dashed line), 106 (solid line), ∞ (dotted-dashed line).
The value ν=0.5 is related to isolated Gaussian chains. The inter-
vals ∆ν and ∆γ show the ranges of change of the exponents ν and
γ, where an analogy of the two-dimensional systems with orientat-
ional interactions and systems with excluded volume effects exists
[14]



There exists another important class of polymer sys-
tems with a power-law decrease of the intrachain corre-
lation function and correspondingly with a non-Gaussian
dependence of the mean-square dimensions of the chain.
The power law occurs in chains with excluded volume
effects [19, 24]. As first pointed out by Flory, [19] the
power law for intrachain correlations exists even for in-
dividual isolated chains due to long-range intrachain
steric interactions, i.e. interactions of the elements dis-
tant along the chain.

In the considered multichain model the power law
(13) manifests itself as a consequence of sufficiently
strong intra- and interchain nearest-neighbor interactions
of chain elements in the corresponding directions of the
sheet (Fig. 2). In spite of the different physical meaning
of parameters in the single-chain theory of excluded vol-
ume effects and the considered two-dimensional multi-
chain model, the existence of the asymptotic power law
in these systems allows us to compare their statistical
properties. The comparison of these systems was consid-
ered and discussed in reference [14]. Therefore, some ef-
fects of intra- and interchain interactions (steric, orientat-
ional etc.) in the low-temperature range of behavior of
polymer systems, e.g. in polypeptides, may be described
by a harmonic potential (7) of the orientational type.

We might include in addition a term with a small con-
stant in Eq. (1) that will take into account non-nearest-
neighbor interactions of chain elements. This term must
lead to inherent twist effects for chains in the β-sheet
(formed, e.g. by any chiral residues). However, it may be
shown that the quadratic (harmonic) approximation (7)
used in this paper leads only to a renormalization of the
bending rigidity constant (Kl).

As stated above, there is a problem of more detailed
consideration of the crossover of the intra- and inter-
chain orientational correlation functions from the expo-
nential law to the power one. Such a crossover is usually
related to the existence of a phase transition [17, 25].
This transition may be considered strongly only in the
high-temperature approach. [16] At higher temperatures
or weak interactions one must also take into account an-
harmonic corrections to the potential (7). These correc-
tions may be made by the methods used for analysis of
the high-temperature behavior of isotropic low-molecu-
lar systems, e.g. by the variation method in the theory of
anharmonic crystals or by the renormalization group
treatment in the theory of liquid crystals [17]. By draw-
ing on the correspondence between statistical properties
of two-dimensional polymer systems with orientational
interactions and those for polymeric systems with ex-
cluded volume effects it is hoped that a similar clarifica-
tion can be achieved by means of the theory the well-
known “coil-helices” or “coil-globule” transitions, [26]
developed in detail for systems with excluded volume ef-
fects, e.g. for peptides.

The other interesting problem is a generalization of
the proposed approach for describing statistical proper-
ties of chains in self-assembled peptide three-dimension-
al ordered structures, e.g. stacks composed of β-sheet

tapes of various thickness: double tapes, fibrils (several
double tapes stacked together) etc. [1, 2, 3] The general-
ization of the harmonic approach (7) to three-dimension-
al ordered systems might allow us to obtain some twist
effects of β-sheets similar to those in chiral (cholesteric)
LC structures. However, these problems will be consid-
ered in detail in the future with the special model of in-
teracting sheets, composed of plane chains [27].
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